
Simultaneous Ultrasonic Evaluation 
with Differentiation of Stress and Texture 

J.F. Smith and R.B. Thompson 

An ultrasonic method for either independent or simultaneous determination of  stress and texture is dis- 
cussed. Quantitative differentiation between stress and texture during simultaneous measurements can 
be made. The method is useful for unidirectionally rolled, extruded, or cast material, and the validity of  
the method has been experimentally verified by extensive tests on rolled materials. Electromagnetic 
acoustic transducers (EMAT's) have been used, and these allow measurements during processing. In 
principle the method is applicable to non-conducting materials if piezoelectric or ferroelectric 
transducers are used, but since they are contracting and EMAT's are noncontacting, the constraints are 
more severe. 
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1. Introduction 

THIS investigation is concerned with the ultrasonic measure- 
ment and quantitative evaluation of stress levels and the degree 
of preferred grain orientation in polycrystalline sheet and plate. 
Ultrasonic techniques are rapid, nondestructive, relatively in- 
expensive, and provide bulk information for the volume sam- 
pled by the ultrasonic wave. This contrasts with x-ray and 
neutron diffraction techniques for both stress and texture deter- 
mination, where coupons must be cut and measurements are 
slow. In addition, x-ray techniques for both stress and texture 
are primarily surface measurements; likewise, strain gages 
measure only surface distortion. Neutron diffraction is capable 
of measuring bulk properties, but is slow, costly, nonportable, 
and destructive. Finally, ultrasonic techniques can be readily 
automated, allowing measurements to be made while material 
is being processed (e.g., dynamic measurements of texture in 
material exiting a rolling mill). 

Although this discussion is concerned primarily with unidi- 
rectionally rolled sheet and plate, obviously some aspects of 
the findings presented here are applicable in other contexts. Ul- 
trasonic measurement while distinguishing between stress and 
texture in unidirectionally rolled material is based on the prem- 
ise that the material being tested has orthorhombic symmetry 
when in an unstressed condition. Justification for approximat- 
ing unidirectionally rolled polycrystalline material as pseudo- 
orthorhombic is based on the fact that, during rolling reduction, 
equal stresses operate on the top and the bottom of the mate- 
r ial--so there is no resultant difference in bias of granular ori- 
entation between the top and bottom. Thus, the granular 
orientation produced by the deformation should be mirrored in 
the horizontal plane. Secondarily, although rolling will pro- 
duce preferred orientations in the rolling direction, there is an 
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equal a priori probability that the granular deformation will 
produce orientations with the same number of grain axes ori- 
ented toward the left as to the right. Therefore, there should be 
a pseudo-mirror oriented vertically along the rolling direction. 
The symmetry of two orthogonal mirrors necessitates a third 
mutually orthogonal mirror so that the overall symmetry is 
pseudo-orthorhombic. 

The velocities of acoustoelastic waves in an orthorhombic 
material vary with direction and polarization of propagation. 
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Fig. 1 (a) Orientation of a rolled sheet of a hypothetical mate- 
rial. (b) Angular dependences of the velocities of longitudinal 
waves (outer curve) and shear waves (inner curves). The solid 
lines represent the unstressed condition. The dashed segments il- 
lustrate the relative magnitude of expected changes for the im- 
portant directions of shear-wave propagation. 
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Fig. 2 Angular dependence of the relative velocities of a hori- 
zontally polarized shear wave in a rolled copper sample in an un- 
stressed state (solid data points) and in a stressed state (open 
data points). 0 ~ represents the rolling direction, and 90 ~ repre- 
sents the transverse direction. The V in the denominator of the 
ordinate is the wave velocity for propagation in the 0 ~ direction 
in the unstressed state. 

Figure 1 shows a plot of velocities as a function of propagation 
direction in the rolling plane for a unidirectionally rolled hypo- 
thetical material. The outer ring represents the directional vari- 
ation of the bulk longitudinal mode, and the inner ring 
represents the directional variation of the shear mode polarized 
in the rol l ing plane. The solid lines are complete contours for 
unstressed material. The dashed lines represent partial contours 
near the rolling and transverse directions that indicate how a 
stress field affects the shear-wave velocities differently in dif- 
ferent directions. As noted later, the presence of a stress tends to 
lower symmetry, and Fig. 1 (b) shows that stress lifts the degen- 
eracy of two orthogonally propagated shear waves whose po- 
larizations are in their mutually shared plane. 

2. Ultrasonic Waves and Stress 

For a small-amplitude acoustoelastic wave propagating 
through an unstressed material, a combinat ion of Hooke 's  law 
and Newton 's  law generates the relationship (Ref 1 ): 

pV 2 =f(Cij ) (Eq 1) 

wheref(Cij) is a function of the elastic constants of the medium 
and depends on the type of wave and on the directions of propa- 
gation and polarization, 9 is the density of the material, and V = 
{f(Cij)/p } I/2 is the velocity of propagation. If the material is un- 
der the influence of a stress field, the velocity equation must be 
modified (Ref 2-4) to include the stress tensor, T: 

pV ,2 = f(Ci, j ) + g(Tij ) (Eq 2) 

where the C~j are effective elastic constants, as modified by 
strain. Thus,  the C~j are slightly shifted from the Cij because of 
the stress-induced strain and satisfy the symmetry relations dic- 
tated by the combination of the pseudo-orthorhombic material 
symmetry and the symmetry implied by the applied stress. To 
lowest order (all that is generally needed), g is a linear function 
of the Tij. Because the shifts in the effective elastic moduli are 
proportional to the stress-induced strain, Eq 2 can be linearized 
to the form: 

V ' -  V) = kT (Eq 3) 

where k is known as the acoustoelastic constant  and subscripts 
are suppressed for conceptual simplicity. Thus, the net stress 
within a material can be determined by the velocity difference 
between the stressed and unstressed states. 

Figure 2 shows experimental data for the relative shift in the 
velocity of a shear wave with horizontal polarization in the roll- 
ing plane of  a copper sheet. The relative velocity is plotted as a 
function of propagation angle with respect to the rolling direc- 
tion. The V in the denominator  of the ordinate of the plot is the 
unstressed velocity along the 0 ~ direction of propagation. An 
example of the practical utilization of the relationship given in 
Eq 3 is the determination of bolt tension (Ref 5). The case of 
bolt tensioning is a particularly simple example,  because the 
velocity can be measured in the initial untensioned state and 
can be monitored as tension is changed. 

It is more generally desired to measure the stress in a mate- 
rial already under load, so the initial](Cij) are not directly meas- 
urable. The measurement  can still be accomplished by 
combin ing  two or more independent  measurements.  The sim- 
plest approach (Ref 6) is to measure the velocities of two shear 
waves propagated orthogonally with polarizations in the plane 
defined by the two propagation directions. Two such waves in- 
duce identical strains as they pass through the material, and, in 
a stress-free material, their velocities are degenerate. In a mate- 
rial under a state of anisotropic stress, however, a difference be- 
tween the two velocities is a measure of a difference between 
the stress levels in the two directions. The nature of the wave 
propagation is shown in Fig. 3(a), and an application of this 
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Fig. 3 (a) Degenerate waves in an unstressed orthorhombic ma- 
terial. (b) Angular dependence of the relative velocities of shear 
waves with polarization in the rolling plane in an essentially un- 
stressed state (solid data points) and with an applied stress 45 ~ 
from the rolling direction (open data points). The definitions of 
numerical angle and of V are the same as in Fig. 2. 

type of wave propagation is shown in Fig. 3(b), where data 
from the rolling plane in a unidirectionally rolled sheet of type 
304 stainless steel are plotted for both the stressed and the un- 
stressed states. Again, the V in the denominator of the ordinate 
is the velocity of propagation along the rolling direction in the 
unstressed state, and 0 ~ is the rolling direction. Here stress was 
applied 45 ~ from the rolling direction. The presence of a stress 
in this direction is obvious from the difference in the relative 
velocities between 45 ~ and 135 ~ in the stressed state. 

The question then becomes one of quantifying the differ- 
ence to evaluate the magnitude of the stress level. The present 
authors were involved with a series of papers (Ref 4, 6-11) that 
addressed this problem through utilization of the general the- 
ory of acoustoelasticity developed by Tokuoka and Iwashimizu 
(Ref 12). King and Fortunko (Ref 13, 14) and Man and Lu (Ref 
15) have undertaken related work. The present authors' ap- 
proach considered that the stresses of interest in sheet and plate 
are the principal stresses lying in the plane of the plate (the 1-2 
plane of Fig. 1). Within this 1-2 plane, the directions shown in 
Fig. 4 may be used to define the problem of evaluation of the re- 
sultant stress when the stress field is oriented in an arbitrary di- 
rection and no measurement of the elastic behavior in the 
unstressed condition is available. The results that were derived 
show that the velocity, VT, of a shear wave polarized in plane 
and propagating in an arbitrary direction, | should conform to 
the relationship (Ref 4): 

pV 2T= T + CT + ~-- j - -J(1-cos  40) - 

 l-cos2ao -320i cL-<J(l-c~176 
/ ,-co 40  o 20 

4 Okq_<j 

I<6-<61sin40 (Eq 4) 

where the C(6 and C~6 values result from stress-induced sym- 
metry distortion and the stress T(O) is 

(Ya + {Jb 
T = - - 7 - -  + cos 2(f~ - 19) (Eq 5) 

where fl is the angle between the rolling direction and the di- 
rection of principal stress. This is a general solution to first or- 
der in stress-induced anisotropy and second order in textural 
anisotropy for plane-wave propagation in a biaxially stressed 
orthorhombic material. Neglect of higher-order terms in stress- 
induced anisotropy is justified for stresses in the range of engi- 
neering interest (i.e., stress levels insufficient to produce 
material failure). 

Figure 4 defines the angles | and fl as well as the principal 
stresses ~ and Ob for Eq 4 and 5. Other terms in these equations 
are defined as: 

( ~ l l  + C 2 2  
CL - 2 (Eq 6a) 

C T = C~6 (Eq 6b) 

C~L - C 2 2  
(x  - ( E q  6c) 

C L 
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where (z and 13 are measures of the longitudinal and shear-wave 
anisotropies, respectively. T h e  Cij are the conventional elastic 
constants in the state of interest with numerical subscripts in 
conventional notation (Ref 1) referring to the axes of Fig. 1 (a). 
There are nine such independent elastic constants for ortho- 
rhombic symmetry. Sayers and Allen (Ref 16) have discussed 
the effect of stress fields on the conventional elastic constants 
and have shown that the C[j in a stressed material have a small 
but measurable difference from t h e  Cij of the same unstressed 
material. If the principal stress directions in an orthorhombic 
material are along the material symmetry directions, the num- 
ber of independent elastic constants remains nine, but principal 
stresses off axes distort the orthorhombic symmetry to produce 
monoclinic symmetry with 14 independent elastic constants, 
The extra stress-induced constants, like the difference between 
Cij and Ci' j, are small. 

To accomplish the stress evaluation, V T can be measured in 
two mutually orthogonal directions in the 1-2 plane, because it 
has been shown (Ref 4, 6-11) using Eq 4 and 5 that: 

V T ( O  ) -- V T ( O  + 9 0  ~  

(C T p)l/2 
(Ya - -  (3b 

(Eq 7) 

The derivation of Eq 7 makes the reasonable assumption that 
texture-induced anisotropy is small, and only terms linear in c~, 
or, and 13 or quadratic in ot and [3 are retained. The first term on 
the right-hand side of Eq 7 is directly proportional to stress. 
Biott (Ref 3) has noted that this term arises from a fundamental 
physical difference between the anisotropy generated in a me- 
dium by stress as compared to that generated by texture. Thur- 

0 

E 

N 
0 

u 
~ o  
tm 
s 
Q_ 

b 

i - 2 KS, 

�9 �9 o 

�9 �9 ~ ~ o e �9 

o �9 
�9 o �9 

J I I I 1 I ] I l I l I I ] I 

Alutnlnurn n 

9.=0 ~ 

Alum~num # 

p ~ O  ~ 

~lurnlr~Um # 

~1:45 ~ 

Slomles5 # 

~ : 0  o 

SIciic~le ss # 

1~ = 45 ~ 

Copper # I 
. q ; O  o 

0 2 4 6 8 io 12 14 16 
oAPPLIED (lO 7 N/m 2 ) 

Fig. 5 Comparison of ultrasonically predicted stress (ordinate) 
with the actually applied stress (abscissa). The vertical and hori- 
zontal scales are the same, so perfect agreement would lie along 
the solid lines with 45 ~ slope. 

ston (Ref 2) and MacDonald (Ref 17) have also discussed as- 
pects of this term, and it has been emphasized (Ref 6) that the 
proportionality constant depends only on the linear elastic con- 
stant of the material and hence is not subject to the well-known 
strong influence of microstructure on nonlinear elastic proper- 
ties. 

The second term on the right-hand side of Eq 7 may be 
thought of as an error induced by textural anisotropy. When it is 
negligible, the principal stress difference may be deduced by 
varying (9 until the magnitude of the left-hand side is maxi- 
mized and then setting that value equal to ( 6 a -  Ob)/2CT" If the 
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anisotropy term is not small, a procedure is still available for re- 
moving its influence on the data. Because Eq 7 contains only 
one term with a 6| angular variation and because that term has 
second-order material anisotropy parameters determining its 
coefficient, that coefficient can be evaluated from the values of 
the 6| term in a Fourier-series representation of [VT(| 
VT(| + 90~ The entire anisotropy term can then be sub- 
tracted from the data, and the foregoing procedure can be ap- 
plied to the corrected data to deduce the principal stress 
difference independent of the texture-induced anisotropy in the 
elastic constants. 

Stress prediction by the foregoing procedures has been 
tested on rolled sheets of cubic aluminum, stainless steel, and 
copper. The results are shown in Fig. 5, where predicted stress 
values from ultrasonic determination are plotted against the ap- 
plied hydraulic tension. The plotted points are the experimental 
data. The scales of the ordinate and the abscissa are the same, so 
perfect fits would lie on the solid lines with 45 ~ slope. The nu- 
merical parameters after the metal names represent different 
textures, and the ~ values represent the angular difference be- 
tween the rolling direction and the applied stress. Testing has 
also been done on hexagonal metals, including titanium and 
zirconium alloys. 

3. Measurement of Texture 

The relation between texture and ultrasonic bulk wave ve- 
locities has been derived by Sayers et al. (Ref 18, 19), who con- 
sidered the case of a polycrystalline aggregate composed of 
cubic single crystals. As justified above, the aggregate was as- 
sumed to have orthorhombic symmetry on the macroscale. In 
the Sayers model, the crystallite orientation distribution func- 
tion (CODF) is used to describe the texture. The CODF gives 
the probability that a crystallite will have its axes at Euler an- 
gles, O, ~ ,  0, with respect to the axes of Fig. 1 (a). Textural in- 
formation can be determined by extracting the anisotropy terms 
that were suppressed in the determination of stress. This can be 
accomplished by solving for the four elastic parameters, cz, 13, 
C T, and C L, defined in Eq 6(a) to (d). These parameters can be 
evaluated (Ref 9) from measurements of the velocities in Eq 
8(a) to (d): 

V ~(0 ~ + V ~(90 ~ ~a + ~Yb 
CL = 2 - 2 (Eq 8a) 

v ~(o ~ + v -~(9o ~ ~ .  + ~b 
CT = 2 2 (Eq 8b) 

ocC L = IV 2L(0~ ) - V ~(90~ - (~Ja - a6) cos 2~ (Eq 8c) 

[3CT= [V 2T(45~ V 2T(O~ + ( ~ ) ( c o s  2~- sin 2f~) 

(cd)2 ( C2 ) (Eq 8d) 

+ 7  CL-C------- ~ 

If the material is unstressed, the solution is straightforward. 
Equations 8(a) and (b) may be first solved individually for C L 
and CT, which then allows reso;ution of cz and 13 from Eq 8(c) 
and (d), respectively. 

The values of the four elastic parameters can then be used to 
calculate the CODF, which quantifies the preferred orientation 
of the grains. For their polycrystalline aggregate, Sayers et al. 
(Ref 18, 19) expanded the CODF, w(~,q/,0), in a series of com- 
plex exponentials and Legendre functions, Zlmn(~), as defined 
by Roe (Ref 20-22): 

W(~,lu = E E Z Wlmn Zlmn(~) e-im~t/e-in~ 
1=0 m=-I n=-I 

(Eq 9) 

Here, 0, gt, and 0 are the Euler angles with respect to the sym- 
metry axes of the aggregate (Fig. 1 a) and ~ = cos 0. The Wire n 
are called the orientation distribution coefficients (ODCs). 

Sayers et al. used a Voigt averaging scheme (Ref 23) to re- 
late the effective second-order elastic moduli of the aggregate 
to the cubic single-crystal moduli (C~I, C~2, and C,~4) and the 
ODCs. Symmetry arguments can be used to limit the number of 
ODCs. Bunge (Ref 24) indicates that for cubic crystallites some 
lower-order ODCs vanish; except for WOO 0 , which is a normali- 
zation constant equal to 1/[4(2H2)], only three coeff ic ients--  
W400, W42 o , and W440--need be considered. Of these, W400 is 
insensitive to in-plane textural anisotropy. For aggregates of 
hexagonal crystallites (Ref 25, 26), W200 and W220 also need to 
be retained, with the number tending to increase with lower 
symmetry. The elastic moduli of the aggregate depend only on 
the ODCs, and thus the ultrasonic velocities of bulk, surface, 
and guided waves also depend on the ODCs. 

Delsanto et al. (Ref 27, 28) have derived the relations be- 
tween the velocities of surface waves and the ODCs for moder- 
ate texture, while Thompson and coworkers (Ref 11,29) have 
related the ODCs to the velocities of the lowest-order plate 
shear-horizontal wave and symmetrical Lamb wave modes 
(Ref 30). The latter results for waves propagating at an angle O 
from the rolling direction are, to the first order in the elastic an- 
isotropy: 

~T ~1/2_ 
(Eq 10a) 

V s ( O ) =  1+ ~- cos 20  

1 CT (1 cos 40)  + (Eq 10b) 

The velocity VSH refers to the horizontally polarized shear 
mode, and the velocity V s refers to the lowest-order symmetri- 
cal Lamb mode. Here the'~ircumflex (^) is used to indicate pa- 
rameters appropriate to guided-wave rather than plane-wave 
propagation. These velocities are relatively easily measured 
(Ref 31) with electromagnetic acoustic transducers (EMAT) 
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Table I C o m p a r i s o n  o f  Voigt ,  Reuss ,  and Hill  a v e r a g e  va lues  for  the C O D F  expans ion  coef f ic ients  o f  f our  d i f ferent  mater ia l s  
as eva lua ted  f r o m  So a n d  S H o  L a m b  w a v e s  

CODF expansion 
coefficient l l00AI __  629 ~ AI 675 ~ _ Copper . . . . . . . .  

W44o(SHo) v -0.00573 0.00505 0.00303 -0.00303 
W44o(SHo) R -0.00555 0.00489 0.00294 4).00334 
Wa4o(SHo) H -0.00564 0.00497 0.00298 4).00318 
W440(So) v -0.00581 0.00551 0.00296 -0.00304 
W440(So)R -0.00564 0.00535 0.00287 -0.00342 
W44o(So) H -0.00572 0.00543 0.00291 -0.00322 
W420(So) V --0.00008 -0,00403 -0.00265 0.00121 
W420(So) R -0.00008 -0.00389 4).00257 0.00123 
W420(So) H -0.00008 -0.00396 -0.00262 0.00122 
W4o0(SHo) v -0_04521 -0.06566 -0.05482 0.04213 
W40o(SHo) R -0.05922 -0.07904 4).06853 4).05082 
W40o(SHo) n -0.05232 4).07245 4).06178 4).00203 
W4oo(So) v -0.00791 0.01378 4).00867 4).01247 
W40o(So) R -0.01175 0.00849 4).01319 -0.01272 
W4oo(So) n -0.00986 0.01109 4).01097 4).00008 

^ 
(Ref 32). The parameters ot and ~ describe the anisotropy of  
guided modes  and can be related to the velocities of  Eq 10(a) 
and (b): 

^ 2[Vso(0~ Vso(90o)] 
c~ - A (Eq 11 a) 

(CL/P) 

= 2[Vsno (45~ - Vsno(0~ 
^ (Eq 11 b) 

(CT/P) 

In one approach, the p lane-wave parameters, C L, CT, ~, and 
!3, can be used in the evaluat ion of  the CODFs.  These can be de- 
rived from measurements  in the plate material by the fol lowing 
relationships: 

^ p2 _ (2 I /2 ) (32 /35)~2C~ 1 + P/L)W4o 0 
CL = CL - L (Eq 12a) 

A 
C T = C T (Eq 12b) 

^ I i + (2P/L)] 
O t = O ~  - -  

1 (p2L2)J 
(,Eq 12c) 

= ~ (Eq 12d) 

where the values capped with a circumflex denote measure- 
ments in plate material and the uncapped values represent the 
corresponding plane-wave measurements.  The Voigt average 
isotropic moduli  that appear in these equations are: 
L = C~l - 2C~ P = C~2 + C~ M = C~4 + C~ where C ~ is 
the elastic anisotropy C ~ = C'~1 - C~2 - 2C~4. The superscript o 
indicates that the values are the single-crystal elastic constants. 

The final step in the evaluation of  the ODCs  in this scenario is 
from the fol lowing relations: 

C 
. r(21/2)12rc2c~ [, + [ (70)1/2]. ] 

(2 )4~"C J/2 
C T = M + ~-~ - W400 - (70) W440 (Eq 13b) 

-(51/2)321~2C~ 
0t = (Eq 13c) 

35L 

(35) 1/2 16'E2C ~ W440 

!3-  35M (Eq 13d) 

With the ODCs  evaluated from Eq 13(a) to (d), a C O D F  can be 
constructed and used to generate pole figures or other quantita- 
tive measures  of the textural anisotropy. Equations have also 
been reported (Ref 33) which directly give the W4m 0 in terms of 
the measured plate-wave velocities.  

Textures from ultrasonic measurements  have been deter- 
mined (Ref  33-35) both for specimens of  a luminum with three 
different textures and for a specimen of  copper. For the textural 
analyses, a small correction (Ref  33) to the V s veloci t ies  was 
made for dispersion effects. The initial textur~ analyses were 
done with Voigt averaging (Ref 23), but Hirao et al. (Ref  36) 
have questioned the use of such averaging rather than Reuss 
(Ref 37) or Hill (Ref 38) averaging. Voigt averaging assumes 
homogeneous  strain in a polycrystal l ine aggregate and aver- 
ages over  stress, whereas Reuss averaging assumes homogene-  
ous stress and averages over  strain. Hill averaging 
compromises  as an arithmetic mean of  the other two averages. 

The textures from the aluminum and copper data were there- 
fore determined with all three averages.  The results are com- 
pared in, Table 1, which lists W4m0values. It may be noted that 
W440 and W400 are overdetermined,  with values der ived from 
both SH o and S o modes, while determination of  W420 can be 
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Fig. 6 Comparisons of x-ray pole figures with ultrasonically determined pole figures using Hill averaging, Voigt averaging, and Reuss av- 
eraging. (a) Rolled copper with 50% reduction. (b) Rolled copper with 89% reduction 

Table 2 Comparison of Hill averages of CODF expansion coefficients from ultrasonic data with expansion coefficients from 
x-ray or neutron diffraction data 

CODF expansion 1100 AI 629 ~ AI 678 ~ AI Copper 
coefficient Ultrasonic data 

W440(SH~,) H -0.00564 0.00497 0.00298 -0.00318 
W44o(So) H -0.(X)572 0.00543 0.00291 -0.00322 
W420(5o) H -0.00008 -0.00396 -0.00262 0.00122 
W4~x)(SHo) H -0.05232 -0.07245 -0.06178 -0.00203 
W4{x)(So)H -0.00986 0.01109 ~).01097 -0.00008 

X-ray(a) Neutron(b) Neutron(b) X-ray(b) 

Wazo -0.00472 0.0069 0.0043 -0.00432 
W42 o -0.00028 -0.0034 ~).0033 0.00132 
W4(~l 0.00098 0.0097 0.0078 0.00113 

(a) X-ray diffraction evaluation from G.C. Johnson, University of California--Berkeley. (b) Neutron diffraction evaluation from G.V. Blessing and R.C. 
Reno, National Bureau of Standards 

done only with S o modes. In most instances differences are on 
the order of 10 to 20%, with agreement in the case of W400tend- 
ing to be least good. The poor agreement for W400 has been ex- 
plained in terms of the requirements for absolute rather than 
relative velocity data and the strong dependence on the iso- 
tropic parameters. Textures for the same specimens were also 
determined by x-ray and neutron diffraction. The ODCs from 
the ultrasonic measurements are compared with the x-ray and 
neutron diffraction results in Table 2. 

Comparisons (Ref 35) of ultrasonic and x-ray pole figures 
for copper at two levels of rolling reduction are shown in Fig. 
6(a) and (b). The ultrasonic pole figures were done with all 
three types of averaging; the pole figures from Hill averaging 
(Ref 38) show the best agreement with x-ray pole figures. The 

symmetries of all ultrasonic pole figures parallel the symmetry 
of the corresponding x-ray pole figure, although in fairness it 
must be acknowledged that the pole figure from Reuss averag- 
ing for the 89% reduction of copper shows very little detail. 
Conversely, one must question how much of the x-ray pole fig- 
ure is really typical of the bulk texture as compared to the sur- 
face texture. Preliminary studies in the hexagonal metals 
titanium and zirconium have also been reported (Ref 39-41 ). 

4. Applications 

An important consequence of texture is its influence on 
plastic deformability, and use of ultrasonic measurements to 
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Fig. 8 Fourfold earing v e r s u s  W440 as measured on 3004 alumi- 
num alloy with SH waves (open data points) and on 3104-H 10 
aluminum alloy with S o waves (closed data points) 

obtain relevant textural information has been the subject of  re- 
cent studies (Ref  42-44). In steel, W400 is known to correlate 
with the average normal  anisotropy (or plastic strain ratio), r, a 
parameter used to predict the ability of  a material to withstand 
deep-drawing operations. Several  investigators have demon-  
strated the prediction o f r  from ultrasonic measurements,  with 
Fig. 7 illustrating one example�9 In the production of  a luminum 
beverage cans, a primary concern is the formation of  "ears"  
(scalloping around the top of  the can). Figure 8 presents a plot 
showing the correlat ion of  W440 , as determined ultrasonically, 
with the degree of  fourfold earing (Ref  45). Further work has 
been concerned with the measurement  of the Kearns j :pa rame-  
ters in zircaloy (Ref  46). These measurements  describe the ef- 
fective fraction of  basal poles aligned along symmetry 
directions and are important in describing the mechanical  prop- 
erties in nuclear applications. 

5. Conclusions 

Anisotropies in the ultrasonic velocit ies can be produced by 
either stress or texture. Schemes are reported, based on the an- 
gular dependence o f  wave speeds, which allow these two 
sources of  anisotropy to be independently determined and 
quantitatively evaluated.  Experimental  results have demon-  
strated the ability to make  quantitative predictions of ' the orien- 
tation distribution coefficients  and to use this information in the 
quantitative predict ion of  formabil i ty parameters. 

References 
1. C. Kinel, Introduction to SolidState Physics, 2nd ed., John Wiley 

& Sons, 1956, chap IV 
2. R.N. Thurston, J. Acoust. Soc. Am., Vol 37, 1965, p 348 
3. M.A. Biott, J. Appl. Phys., Vol 11, 1940, p 522 
4. R.B. Thompson, S.S. Lee, and J.E Smith, J. Acoust. Soc. Am., Vol 

80, 1986, p 921 

5. J.E Smith and J.D. Greiner, J. Met., Vol 32, 1980, p 34 
6. R.B. Thompson, J.E Smith, and S.S. Lee, in Nondestructive 

Evaluation: Applications to Materials Processing, O. Buck and 
S. Wolf, Ed., American Society for Metals, 1984, p 155 

7. R.B. Thompson, J.F. Smith, and S.S. Lee, in Review of Progress 
in Quantitative Nondestructive Evaluation, Vol 2B, D.O. 
Thompson and D.E. Chimenti, Ed., Plenum Press, 1983, p 1339 

8. R.B. Thompson, J.E Smith, and S.S. Lee, Appl. Phys. Lett., Vol 
44, 1984, p 296 

9. R.B. Thompson, S.S. Lee, and J.E Smith, in Review of Progress 
in Quantitative Nondestructive Evaluation, Vol 3B, D.O. 
Thompson and D.E. Chimenti, Ed., Plenum Press, 1984, p 1311 

10. S�9 Lee, J.F. Smith, and R.B. Thompson. in Review of Progress 
in Quantitative Nondestructive Evaluation. Vol 4B, D.O. 
Thompson and D.E. Chimenti, Ed., Plenum Press. ]985, p 1061 

11. R.B. Thompson, J.E Smith. and S.S. Lee. in 111 Process Nonde- 
structive Evaluation and Process Control. H. Wadley. Ed., 
American Society for Metals, 1986. p 73 

12. T. Tokuoka and Y. Iwashimizu. lnt. ,l. Solids Struct., Vol 4. 1968, 
p 383 

13. R.B. King and C.M. Fortunko. J. AppI. Phys.. Vol 54. 1983, p 
3027 

14. R.B. King and C.M. Fortunko. Ultrasonics. Vol 21, 1983, p 256 
15. C.S. Man and W.Y, Lu.J. Elasticity. Vol 17. 1987, p 159 
16. C.M. Sayers and D.R. Allen. J. Phys. D. Appl. Phys., Vol 17, 

1984. p 1399 
17. D.E. MacDonald. IEEE Trans. Sonirs Ultrasonics, Vol SU-28, 

1981.p75 
18. C.M. Sayers,,t. Phys. D. AppL Phys., Vo[ 15, 1982, p 2157 
I9. D.R. Alien. R. Langman, and C.M. Sayers, Ultrasonics, Vol 23, 

1985. p 215 
20. R.J. Roe, J. Appl. Phys., Vo137, 1966, p 2069 
21. R.J. Roe and W.R. Krigbaum, J. Chem. Phys., Vol 40. 1964, p 

2608 
22. R.J. Roe,,I. Appl. Phys., Vol 36, 1965, p 2024 
23. W. Voigt, Lehrhuch der Kristallphysik, Taubner. Leipzig, 1928. p 

962 
24. H.J. Bunge, KHstall. Tech., Vol 3, 1968, p431 
25. C.M. Sayers, Ultrasonics, Vol 24, 1986, p 289 
26. Y. Li and R.B. Thompson, J. AppL Phys., Vol 67, 1990, p 2663 

280---Volume 3(2) April 1994 Journal of Materials Engineering and Performance 



27. RE Delsanto and A.V. Clark, J. Acoust. Soc. Am., Vol 26, 1988, p 
188 

28. P.E Delsanto, R.B. Mignogna, and A.V. Clark, in Proc. 2nd Int. 
Symp. Nondestructive Characterization of  Materials, J.F. Bus- 
siere, Ed., Plenum Press, 1987, p 535 

29. R.B. Thompson, S.S. Lee, and J.F. Smith, Ultrasonics, Vol 25, 
1987, p 133 

30. B.A. Auld, Acoustic Waves and Fields in Solids, Wiley-Inter- 
science, 1973, chap. IX 

31. S.S. Lee, J.F. Smith, and R.B. Thompson, in Formability and 
Metallur,~ical Structure, A.K. Sachdev and J.D. Embury, Ed., 
TMS-AIME, 1987, p 177 

32. R.B. Thompson, in Physical Acoustics, Vol XIX, R.N. Thurston 
and L. Pierce, Ed., Academic Press, 1990, p 157 

33. R.B. Thompson, J.F. Smith, S.S. Lee, and G.C. Johnson, Metall. 
Trans. A, Vol 20A, 1989, p 2431 

34. A.V. Clark, Jr., R.C. Reno, R.B. Thompson, J.F. Smith, G.V. 
Blessing, R.J. Fields. P.P. Delsanto, and R.B. Mignona, Ultrason- 
ic's, Vol 26, 1988, p 189 

35. J.F. Smith, Y. Li, and R.B. Thompson, in Review of  Progress 
in Quantitative Nondestructive Evaluation, Vol 7B, D.O. 
Thompson and D.E. Chimenti, Ed., Plenum Press, 1988, p 1383 

36. M. Hirao, K. Aoki, and H. Fukuoka, J. Acoust. Soc. Am., Vol 81, 
1987, p 1434 

37. A. Reuss, Z. Angew. Math. Mech., Vol 9, 1929, p 49 

38. R. Hill, Proc. R. Soc. (London)A, Vol 65, 1952, p 349 

39. S.S. Lee, B.Y. Ahn, H.J. Kim, and Y.C. Kim, in Nondestructive 
Characterization of  Materials IV, C.O. Ruud, J.E Bussiere, and 
R.E. Green, Jr., Ed., Plenum Press, 1990, p 439 

40. Y. Li, R.B. Thompson, J.H. Rose, and T.M. Holden, in Nonde- 
structive Characterization of Materials IV, C.O. Ruud, J.F. Bus- 
siere, and R.E. Green, Jr., Ed., Plenum Press, 1990, p 467 

41. Y. Li, S.S. Lee, R.B. Thompson, and C.M. Sayers, Mater. Sci. 
Eng. A,Vol A 177, 1994, p 761 

42. M. Hirao, H. Fukuoka, K. Fujisawa, and R. Murayama, J. Non- 
destl: Eval., Vol 12, 1993, p 27 

43. R.B. Thompson, E.E Papadakis, D.D. Bluhm, G.A. Alers, K. 
Forouraghi, H.D. Skank, and S.J. Wormley, J. Nondestr. Eval., 
Vol 12, 1993, p 45 

44. K. Kawashima, T. Hyoguchi, and T. Akagi, J. Nondestr. Eval., Vol 
12, 1993, p 71 

45. R.B. Thompson, Progress in the Ultrasonic Characterization of 
Texture and Formability of Rolled Metal Sheets, Mater. Eval., 
Vol 51, 1993, p 1162 

46. R.B. Thompson, A.J. Anderson, and C.S. Cook, in Nondestruc- 
tive Characterization o f  Materials VI, R.E. Green, Jr., T. Kishi, 
M.H. Manghnani, and C.O. Ruud, Ed., Plenum Press, in press 

47. ER. Mould and T.E. Johnson, SheetMet. Ind., 1973, p 328 

Journal of Materials Engineer ing and Performance Volume 3(2) April 1994--281 


